Surface Mount

Thyristor Surge Protective Devices TSP0080SB-TSP4200SB

TSP0080SB - TSP4200SB Series are designed to protect broadband equipment such as modems, line card, CPE and DSL from damaging over-voltage transients.

The series provides a surface mount solution that enables equipment to comply with global regulatory standards.

FEATURES

Low voltage overshoot
Low on-state voltage
Does not degrade surge capability after multiple surge events within limit
Fails short circuit when surged in excess of ratings

Low Capacitance

MECHANICAL DATA

Case: SMB Molded plastic

Main applications

TIA-968-A
ITU K.20/21 Enhanced level
ITU K.20/21 Basic Level
GR 1089 Inter building
GR 1089 Inter building
IEC 6100-4-5
YD/T 1082 YD/T 993 YD/T 950

Absolute Ratings (Tamb=25 ${ }^{\circ} \mathrm{C}$)				
Symbol	Parameter		Value	Unit
Ts	Storage temperature range		-55 to +150	\%
Tj	Maximum junction temperature		150	${ }^{\circ} \mathrm{C}$
Ipp	Repetitive peak pulse current	$\begin{gathered} \hline 10 / 1000 \mu \mathrm{~s} \\ 10 / 560 \mu \mathrm{~s} \\ 10 / 160 \mu \mathrm{~s} \\ 8 / 20 \mu \mathrm{~s} \\ 2 / 10 \mu \mathrm{~s} \end{gathered}$	$\begin{gathered} 75 \\ 100 \\ 150 \\ 250 \\ 250 \end{gathered}$	A
$\mathrm{I}_{\text {TSM }}$	Non repetitive surge peak on-state current (sinusoidal)	$\mathrm{t}=1 \mathrm{~s}$	8	A

Electrical Parameters

Symbol	Parameter		
V_{RM}	Stand-off voltage		
V_{BR}	Breakdown voltage		
V_{BO}	Breakover voltage		
I_{RM}	Leakage current		
$\mathrm{l}_{\text {PP }}$	Peak pulse current		
I_{BO}	Breakover current	-	$V_{\mathrm{RM}} \quad \mathrm{~V}_{\mathrm{BN}} \mathrm{~V}_{\mathrm{DO}} V^{2}$
I_{H}	Holding current		
V_{R}	Continuous reverse voltage	7	
I_{R}	Leakage current at V_{R}	\int	
C0	Capacitance		

Electrical Characteristics (25C)									
	VRM	IRM	VBO	IBO	VT	IT	Co	IH	
		Min		Max.	Max.	Max.		Max.	Min.
TSP0080SB	V	uA	V	mA	V	A	pF	mA	
	6	2	15	800	2	1	80	50	
TSP4200SB	390	5	500	800	2.2	1	25	150	

Bruckewell Technology Corp., Ltd.

- Characteristic Curves

Figure 1. Non repetitive surge peak on-state current versus overload duration

Figure 3. Relative variation of holding current versus junction temperature

Figure 5. Relative variation of holding current versus junction temperature

Figure 2. On-state voltage versus on-state current (typical values)

Figure 4. Relative variation of break over voltage versus junction temperature

Figure 6. Relative variation of break over voltage versus junction temperature

Figure 7. Relative variation of leakage current versus reverse voltage applied (typical values)

Figure 8. Variation of thermal impedance junction to ambient versus pulse duration

